53 lines
1.3 KiB
Markdown
53 lines
1.3 KiB
Markdown
|
|
|
||
|
|
|
||
|
|
![[TD_FGE_2025.pdf#page=10]]
|
||
|
|
![[b5364d1697.pdf#page=5]]
|
||
|
|
# Exercise 1.
|
||
|
|
|
||
|
|
Loi des mailles $\rightarrow E=U_R+UC$
|
||
|
|
$E=R_i+U_C$
|
||
|
|
$E=RC\frac{dU_C}{dt}+U_C$
|
||
|
|
|
||
|
|
La solution est une courbe de la forme $U_C(t)=A_e^{-t/RC}+B$
|
||
|
|
|
||
|
|
Conditions aux limites:
|
||
|
|
À $t=0$, $U_C(t)=0$ par lecture du circuit.
|
||
|
|
$U_C(t)=A_e^{-0/RC}+B=A+B$
|
||
|
|
$\implies 0=A+B\implies A=-B$
|
||
|
|
|
||
|
|
À $t\rightarrow ∞$, $U_C(t)=E_0$ par lecture du circuit.
|
||
|
|
$U_C(∞)=B$ par la forme de la solution.
|
||
|
|
Finalement, $U_C(t)=-E_0e^{-t/RC}+E_0=E_0(1-e^{-t/RC})$
|
||
|
|
|
||
|
|
$V=E-U_C(t)$
|
||
|
|
$V(t)=E_0e^{-t/RC}$
|
||
|
|
|
||
|
|
# Exercise 2.
|
||
|
|
![[Pasted image 20251003152305.png]]
|
||
|
|
|
||
|
|
|
||
|
|
$\tau=RC=10E^3\times100E^{-6}=1s$
|
||
|
|
![[IMG_7370.jpeg]]
|
||
|
|
|
||
|
|
# Exercise 3: Second order DC circuits
|
||
|
|
![[Pasted image 20251003160147.png]]
|
||
|
|
|
||
|
|
$\implies I=CL\frac{d^2i_1}{dt^2}+i_1$
|
||
|
|
|
||
|
|
Puisque $0=LC\frac{d^2U}{dt^2}+U+°\times\frac{dU}{dt}$
|
||
|
|
$\implies$ Solution: $U(t)=A\cos{(\omega_0t)}+B\sin{(\omega_0t)}$
|
||
|
|
À $t=0$, $U(t)=0$ donc $A=0$.
|
||
|
|
|
||
|
|
Donc $U(t)=B\sin{(\omega_0t)}$
|
||
|
|
d'où: $\frac{du}{dt}=B\omega_0\cos{(\omega_0t)}$
|
||
|
|
Or, $\frac{dU}{dt}=\frac{i_C}{C}$ et $i=i_C+i_L$
|
||
|
|
Donc $\frac{dU}{dt}=\frac{i-i_L}{C}$
|
||
|
|
|
||
|
|
À $t=0$:
|
||
|
|
$\frac{dU}{dt}=B\omega_0=\frac{I}{C}$
|
||
|
|
Parceque $I_L$ est continu:
|
||
|
|
$I_L(0^+)=I_L(0^-)=0$
|
||
|
|
$\implies B=\frac{I}{i\omega_0}=\frac{I}{\frac{C}{\sqrt{LC}}}=\frac{I\sqrt{LC}}{C}$
|
||
|
|
|
||
|
|
Finalement, $U(t)=\frac{I\sqrt{LC}}{C}\sin{(\frac{1}{\sqrt{LC}}t)}$
|